Project Title	Funding	Institution	
Aberrant synaptic function caused by TSC mutation in autism	\$0	Columbia University	
Underlying mechanisms in a cerebellum-dependent model of autism	\$0	Harvard Medical School	
Autism phenotypes in Tuberous Sclerosis: Risk factors, features & architecture	\$0	King's College London	
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$0	Stanford University	
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Children's Memorial Hospital, Chicago	
A cerebellar mutant for investigating mechanisms of autism in Tuberous Sclerosis	\$0	Boston Children's Hospital	
TrkB agonist therapy for sensorimotor dysfunction in Rett syndrome	\$0	Case Western Reserve University	
A stem cell based platform for identification of common defects in autism spectrum disorders	\$28,000	Scripps Research Institute	
Regulation of synapse elimination by FMRP	\$54,734	University of Texas Southwestern Medical Center	
L-type calcium channel regulation of neuronal differentiation	\$32,129	Stanford University	
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$51,326	University of Texas Southwestern Medical Center	
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$26,338	Washington University in St. Louis	
Pleiotropic roles of dyslexia genes in neurodevelopmental language impairments	\$41,800	Yale University	
Neurobiology of RAI1, the causal gene for Smith-Magenis syndrome	\$31,022	Stanford University	
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$28,000	Baylor College of Medicine	
Proteomics in drosophila to identify autism candidate substrates of UBE3A (supplement)	\$29,600	University of Tennessee Health Science Center	
Investigating the homeostatic role of MeCP2 in mature brain	\$35,400	Baylor College of Medicine	
The role of MeCP2 in Rett syndrome (supplement)	\$38,273	University of California, Davis	
The role of UBE3A in autism	\$62,500	Harvard Medical School	
Mechanism of UBE3A imprint in neurodevelopment	\$33,616	University of California, Davis	
Mesocorticolimbic dopamine circuitry in mouse models of autism	\$87,337	Stanford University	
dFMRP and Caprin: Translational regulators of synaptic plasticity	\$12,768	University of Washington	
Presynaptic fragile X proteins	\$90,000	Brown University	
The microRNA pathway in translational regulation of neuronal development	\$352,647	University of Massachusetts Medical School	
Quantitative proteomic approach towards understanding and treating autism	\$112,500	Emory University	
Identification of targets for the neuronal E3 ubiquitin ligase PAM	\$60,000	Massachusetts General Hospital	
MicroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Massachusetts General Hospital	
Coordinated control of synapse development by autism-linked genes	\$75,000	University of Texas Southwestern Medical Center	
Mechanisms of synapse elimination by autism-linked genes	\$75,000	University of Texas Southwestern Medical Center	
Grammatical development in boys with fragile X syndrome and autism	\$148,500	University of Wisconsin - Madison	

Project Title	Funding	Institution		
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	George Washington University		
Augmentation of the cholinergic system in fragile X syndrome: a double-blind placebo study	\$237,600	Stanford University		
Sex differences in early brain development; Brain development in turner syndrome	\$156,841	University of North Carolina at Chapel Hill		
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$246,254	Dana-Farber Cancer Institute		
Activity-dependent phosphorylation of MeCP2	\$174,748	Harvard Medical School		
Genetically defined stem cell models of Rett and fragile X syndrome	\$175,000	Whitehead Institute for Biomedical Research		
Role of intracellular mGluR5 in fragile X syndrome and autism	\$150,000	Washington University in St. Louis		
Pathophysiology of MeCP2 spectrum disorders	\$170,383	Baylor College of Medicine		
Functional circuit disorders of sensory cortex in ASD and RTT	\$254,976	University of Pennsylvania		
Probing a monogenic form of autism from molecules to behavior	\$187,500	Stanford University		
Olfactory abnormalities in the modeling of Rett syndrome	\$351,575	Johns Hopkins University		
Predicting phenotypic trajectories in Prader-Willi syndrome	\$310,752	Vanderbilt University		
The role of MeCP2 in Rett syndrome	\$329,781	University of California, Davis		
MeCP2 modulation of bdnf signaling: Shared mechanisms of Rett and autism	\$314,059	University of Alabama at Birmingham		
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$278,656	University of Texas Southwestern Medical Center		
Revealing protein synthesis defects in fragile X syndrome with new chemical tools	\$315,341	Stanford University		
Proteomics in drosophila to identify autism candidate substrates of UBE3A	\$313,159	University of Tennessee Health Science Center		
Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$300,000	University of Texas Southwestern Medical Center		
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$300,000	Columbia University		
Genetic rescue of fragile X syndrome in mice by targeted deletion of PIKE	\$60,000	Albert Einstein College of Medicine of Yeshiva University		
Regulation of 22q11 genes in embroyonic and adult forebrain	\$308,631	George Washington University		
Genotype-phenotype relationships in fragile X families	\$530,124	University of California, Davis		
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$419,137	University of Texas Southwestern Medical Center		
Development of novel diagnostics for fragile X syndrome	\$537,123	JS Genetics, Inc.		
Limbic system function in carriers of the fragile X premutation	\$677,700	University of California, Davis		
Limbic system function in carriers of the fragile X premutation (supplement)	\$382,500	University of California, Davis		
Dysregulation of mTOR signaling in fragile X syndrome	\$403,767	Albert Einstein College of Medicine of Yeshiva University		
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$401,852	University of Illinois at Urbana Champaign		

Project Title	Funding	Institution	
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$490,756	University of California, Irvine	
Allelic choice in Rett syndrome	\$390,481	Winifred Masterson Burke Medical Research Institute	
Emergence and stability of autism in fragile X syndrome	\$358,000	University of South Carolina	
Neuronal activity-dependent regulation of MeCP2	\$426,857	Harvard Medical School	
Mouse models of the neuropathology of tuberous sclerosis complex	\$253,177	University of Texas Health Science Center at Houston	
Study of fragile X mental retardation protein in synaptic function and plasticity	\$366,516	University of Texas Southwestern Medical Center	